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Intrinsic characterisation of orthogonal separation of one 
coordinate in the Hamilton-Jacobi equation 
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t School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA 

Received 11 December 1981 

Abstract. We extend an idea due to Woodhouse to give a coordinate-free characterisation 
of the orthogonal separation of one coordinate for the Hamilton-Jacobi equation on a 
pseudo-Riemannian manifold, in terms of an involutive family of Killing tensors. The 
coordinates can be computed from the Killing tensors. 

1. Introduction 

Let V" be an n-dimensional pseudo-Riemannian manifold and let (y ' )  be a local 
coordinate system for V". The Hamilton-Jacobi equation for V" is 

where ai =ayi, E is a constant, and the metric on V", expressed in the coordinates 
( Y  7, is 

ds2 = gii dy' dy'. 
i,i 

Here, &gikgL' = 8;. Equation (1.1) has the same form in all coordinate systems. All 
functions on V" that occur in this paper are assumed to be locally analytic. Associated 
with V" we have the 2n-dimensional cotangent bundle 3" with local coordinates 
(y', pi) .  If (y") is another coordinate system on V", y"=f'(y'), it induces a new local 
coordinate system (y", p ; )  on 3" where p j  = Z1 (ay'/ay'')pl. Thus the Hamiltonian Z, 

is also independent of coordinates. Important to our discussion is the concept of a 
constant of the motion 2'(y, p ) ,  i.e. a function 2' on 3" such that {Y, Z} = 0, where 
Z is the Hamiltonian and 

(1.4) 

is the Poisson bracket of functions 9 and Y on 3". If 5? is a polynomial in the pi, 
then it is a Killing tensor. A Killing tensor linear in the p i  is a Killing vector. 
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Woodhouse (1975) studied a simple construction that associates a constant of the 
motion for (1.1) with each coordinate system in which a single variable separates. He 
considered only the case where the separated coordinate x 1  was non-null, i.e. g" # 0. 
For this case the associated constants of the motion are Killing vectors or second-order 
Killing tensors. (In Kalnins and Miller (1982) the authors present some preliminary 
results concerning the separation of a null coordinate.) He showed that non-null 
separation was of two types. One type corresponds to Killing vectors alone and is 
associated with ignorable separable coordinates, i.e. coordinates x l , .  . . , x k  such that 
a,lg"(x) = 0 for 1 s 1 s k s n. The second, and more interesting, type corresponds to 
second-order Killing tensors. Woodhouse showed that, for proper Riemannian and 
Lorentzian spaces at least, this second type was always equivalent to the existence of 
a non-null separable coordinate x which was orthogonal, i.e. there exists a coordinate 
system (x', x " )  such that (1.1) has a complete integral 

(1.5) 

with g'"(x)  = 0, 2 s a  s n. 
In this paper we shall determine an intrinsic (coordinate-free) characterisation of 

orthogonal separation of one coordinate on any space V" in terms of the Killing 
tensors associated with the coordinate by the Woodhouse construction. Such a 
characterisation of partial separation in terms of Killing tensors is of interest in celestial 
mechanics and general relativity theory (Woodhouse 1975, Benenti and Francaviglia 
1980), and when extended to Laplace, wave, Helmholtz and Schrodinger equations 
it is useful in the construction of explicit solutions for the differential equations of 
mathematical physics (Kalnins et a1 1979). 

In 0 2 we first ieview the relationship between complete integrals of (l.l), perniit- 
ting separation of a single orthogonal coordinate, and the Woodhouse construction. 
We then derive the canonical set of separation equations satisfied by the complete 
integral. Our principal result is theorem 1, which gives a test for separation of the 
orthogonal coordinate x1 in ( x ' )  in terms of a system of differential equations satisfied 
by the metric g"(x). Section 3 is devoted to the proof of theorem 2, an intrinsic 
characterisation of orthogonal separation in terms of Killing tensors. For spaces in 
which the Killing tensors are just polynomials in the Killing vectors, such as spaces 
of constant curvature, theorem 2 reduces the study of single orthogonal variable 
separation to a strictly algebraic problem. 

A similar treatment of complete orthogonal separation of (1.1) was given by the 
authors in Kalnins and Miller (1980). 

U(X, c )  = u y x l ,  c)+u*(xP,  E )  

2. The canonical separation equations 

We say that a function U = u(x l , .  . . , x", CI,. . . , c,) is a complete integral of the 
Hamilton-Jacobi equation 

n 

W x ,  P) g"(x)p,p,  = E (2.1) 
1.1 = 1 

provided U satisfies (2.1) with p I  = a,~u, that c1 = E and that the n x n matrix (ap,/acr) 
has rank n. (Here, the parameters (c l , .  . . , c,) range over a connected open set in 
R".) As is well known (Woodhouse 1975), a complete integral is always associated 
with an involutive family of n constants of the motion. 
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Lemma 1. Let u(x ,  c )  be a complete integral for the Hamilton-Jacobi equation. Then 
there exist n functions Af(x, p )  on the cotangent bundle 3" such that 

(1) the n x n matrix (aAl/api) is non-singular; 
(2) {Af,A,}=O, l s I , m s n ;  

(4) A,(x, p )  = cf, 1 s I s n, where pi  = a,su(x, c ) ,  
(3) A i = % ' ;  

Conversely, if ( A I )  is a family of n functions on 3" satisfying properties (1)-(3), then 
there exists a complete integral U for (2.1) satisfying property (4). 

More generally, for 1 s k s n we have 

Lemma 2. Let Af(x, p), 1 s 1 s k, be a family of functions on 3" such that 
(1) the 1 x n matrix (aAl/dpi) has rank k ;  
(2) {A), A,,,} = 0, 1 s I, m s k ; 
(3) A 1  E%'. 

Then there exists a complete integral U = u ( x ,  c )  such that 

Proof. Suppose the family {A/} satisfies hypotheses (1)-(3). For a suitable choice of 
parameters cI we can use condition (1) to show that the equations A&, p) = CI ,  1 s 1 s k, 
can be solved for k of the p i ,  which without loss of generality we can assume to be 
plt p2,  . * .  9 P k :  

Next we must show that there exists a function u ( x ,  c )  satisfying (2.3), where p i  = a +  
For fixed xb, 1 S l s k  and a given function UO(X&+', . . . , x " ;  c k + l , .  . . , c,) we claim 
that there is a unique solution u ( x ,  c )  of equations (2.3) such that 

k k + l  k t l  
u ( x & .  . . , x ~ , x  , . . . , x " ; c ) = u ~ ( x  ,. . . , x " ; c L + ~ ,  . . . ,c"). (2.4) 

(We require that the ( n  - k )  x (n  - k) matrix (a2u/ax'acj) is non-singular, where k s 
i, j s n.) 

The proof is a slight variant of the standard proof for the Cauchy-Kowalewski 
theorem (John 1978, Courant and Hilbert 1962). In particular the solution can be 
represented as a Taylor expansion 

where the coefficients 

are computed from (2.4) and successive differentiation of (2.3). The existence and 
uniqueness proofs are identical to the standard Cauchy-Kowalewski proofs except 
that it is necessary to show that whenever a coefficient UI, , , , . , I~  can be computed in 
two distinct ways from equations (2.3) the answers must agree. From the right-hand 
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side of (2.2) we have 

k where Za=l D L ( a A a / a p m )  = a!,,, 1 s 1, m s k .  Evaluating this expression for x '  = xb, 
1 s i s k we see that by construction a p a / a x p  = app/axa  and, since ap l /axp  can be 
computed in only one way, ap, /axp = app/ax l .  Thus apm/ax '  = ap l /axm at X I  = xb, 
1 < i < k .  Successive differentiation of (2.5) with respect to the variables x' and use 
of (2.3) leads to the equality of all cross partials. Furthermore, det(ap,/ac,) f 0 so U 
is a complete integral. 

Suppose x 1  is an orthogonal coordinate, i.e. x = ( x ' ,  x z ,  . . . , x " )  and g'"(x) = 0 for 
2 s a  s n, so that g " ( x )  # 0. We say that the Hamilton-Jacobi equation is separable 
in the coordinate x 1  provided there exists a complete integral for (2.1) of the form 

u ( x , c ) = u ~ l ~ ( x l , c ) + u * ( x a , c ) .  (2.6) 

Woodhouse (1975) showed that if x 1  is an orthogonal separable coordinate then 

(2.7) 

is a function gT = & ( A l ,  . . . , A,,) of the involutive family A, where here the Hamiltonian 
takes the form 

(2.9) 

Moreover, Woodhouse demonstrated that for proper Riemannian and Lorentzian 
spaces the (apparently) more general concept of non-null separation (g" f 0) is 
equivalent to either orthogonal separation or the existence of an ignorable variable. 
In this paper we shall use the Woodhouse construction (2.7) to give a complete 
characterisation of orthogonal separation. 

Let u ( x , c )  be a complete integral of the form (2.6) and denote by K ~ ,  K Z ,  ~ 3 ,  

respectively, the dimensions of the vector spaces spanned by elements (1) :  {g7, 7 E I}, 
(2): {d%, 7 E I}, (3): {d,F&, .r E I} over (1) the field of real scalars and (2), (31, the field 
of functions f ( x ) ,  where I is an open interval on the real line on which 9% is defined. 
Here, 

Lemma 3. 1 s K~ = K ~ S  K~ < 00. 

The lemma is evident, except for the fact that K~ = K ~ .  It is evident that K~ 3 K ~ .  Let 
{gT,, I = 1,  . . . , K ~ }  be a set of K~ constants of the motion such that {dp9?T,} is linearly 
independent over the field of functions f(x). Then, by choosing new parameters 
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E, = z j ( c )  with det(aEi/aci) # 0 if necessary, we can assume that the n constants of the 
motion Ai associated with the parameters ci in u(x ,  c )  have the property A i  = gTI, 
1 = I ,  . . . , K?. For fixed T, d,%? is a linear combination of the forms {dPgTl, 1 s I s K ~ }  

and dS7 is a linear combination of the forms {dAi, 1 S i c n ) .  Thus, there exist functions 
fT, g, such that 

%=f7(Ai, .  . . , A K , ; x ) = g T ( A i , .  . . , A " ) .  

Since dpfT = d,g, and {ddi ,  1 s i s n }  is linearly independent we have 

a g m ,  = 0, i = ~ 3 +  1, .  . . , n, 

so d% is a linear combination of 

It follows from lemma 3 that 

the forms {d%?,, 1 s I S ~ 3 ) .  Hence K Z  S K ~ .  

T E 1. 

(2.1 1) 

(2.12) 

(2.13) 

where 
1,. . . , K ~ }  is linearly independent (over the field of functions on V"). Thus 

j = 1, . . . , K ~ }  is linearly independent (over the real scalars) and {dPgT,, i = 

(2.14) 

Finally, we can add %' to our basis set {gT,}, eliminating one of the Y&, if {d$', d&,, i = 
1, . . . , K ~ }  is linearly dependent, so that (renumbering the T, if necessary) 

= gj(%7*, . . . , %J j = K 3 + 1 , .  . , , K 1 .  

U; 

/ = 2  
%=fi(T)x+ f , ( T ) % , >  K ;  = K 1  Or K1 f 1. (2.15) 

(It may be that f1(7) 0.) Setting 2f = for convenience, we note that 

%TI = =% + P X ,  / = I , .  . . , K ; ,  (2.16) 

where 

p1= 1, 

31 = 0, 

Moreover, P I  is a root 
simultaneous eigenform 

(2.17) 

of 917, with respect to the Hamiltonian 2, and dx' is the 
for the {%,} (Eisenhart 1949). 

From (2.15) and the fact that is a constant when evaluated at p, = d,~u(x, c )  we 
see that the separation equations for (2.1) in the coordinates ( x ' ,  x ' )  are 

p ; +  c f , ( x l ) E ,  =o ,  
whereE,=c,, l a j S K ; ; E , = g , ( c l ,  . . . ,  c , ; ) , ~ ; + l a j C ~ ; .  

K ;  parameters. Indeed, if 

K ;  

1'1 
=%(x y, pa 1 + P l ( X Y ) C 1  - E, = 0, 2 s  1 S K \ ,  (2.18) 

We note that some of the separation parameters E, may be functions of the first 

%' = p ; + f2 ( x  ) p  : + f3(x ) P  : + f 4 b  ) P 2 P 3  

u(x ,  c )  = u(l'(xl, c ) + J Z x 2 + G x 3  

then (2.1) admits a complete integral 
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and separation equations 

p:+c1 + f 2 c z + f 3 c 3 + f 4 J L G =  0,  
p :  - c 2  = 0,  

P :  - c 3  = 0, 

P 2 P 3  - 4 C 2 c 3  =o,  
K ;  = K 3 +  1 = 3 ,  K ;  = K i  + 1 =4. 

It should be remarked that the functions h ( x ' ) ,  =Y,(x',  p y ) ,  p , ( x Y )  occurring in the 
canonical equations (2.18) are not arbitrary, for they are subject to the conditions 
{X, g7} = {g,,, %} = 0 which are equivalent to 

(31, =Ym 1 = 0, {=Y,, P m }  = {=Ym, PL} ,  2 s 1 ,  m S K ; .  (2.19) 

Now suppose ( x ' )  is a coordinate system on V" with respect to which the Hamil- 
tonian takes the form (2.8). We will determine necessary and sufficient conditions 
that the coordinate x 1  be partially separable, i.e. that the Hamilton-Jacobi equation 
admit a complete integral of the form (2.6). To do this we first form the function %, 
(2.7), from the contravariant metric tensor. Clearly, necessary conditions for separ- 
ation are that {Z, g7} = 0, T E I and that K~ = K~ where K Z  = dim Span{d%, T E Z}, 
K 3  = dim Span{dPgr, T E I }  and the span is taken over the field of functions f ( x ) .  These 
conditions are also sufficient. We see from (2.7) and (2.8) that 

Using these expressions and the condition {X, gr}  = 0 it is straightforward to verify 
that {%&, gT} = 0 ,  p, T E Z. If K~ = K~ then we can write 

(2.21) 

where {dpX, dpgT2, . . . , dPgrx5} is linearly independent and %, = g,(X, '4,,, . . . , g7+ ), 
i = K ;  + 1, . . . , K ; .  Then from lemma 2, there exists a complete integral u ( x ,  c )  of 
the Hamilton-Jacobi equation such that X = c 1 ,  gT, = c,, 2 S j S K ; ,  for p ,  = a,u(x, c ) .  
It follows immediately from (2.21) that dX-p1 = aXlpy = 0. Hence, U takes the form 
(2.6). We have proved 

Theorem 1 .  Let (xi, , . . , x " )  be a coordinate system such that 

The Hamilton-Jacobi equation is separable in the coordinate x 1  if and only if (1) 
{X. g7} = 0, T E Z where 

and (2) K 2  = K 3 .  
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We note that condition (2) is essential. Indeed, the example 

= p :  +fl(xl)p: +f2(x1)p: +f3(x1)P2P3 +f4(x1)(p4p3 -P5P2) +f5(X1)b4P2 + xsP3)2 
(2.22) 

shows that (2) may be violated even when condition (1) holds. 

3. The intrinsic characterisation 

In this section we provide a coordinate-free characterisation of partial separation by 
one coordinate. (For simplicity of exposition we will express some of our formulae 
in terms of an arbitrary coordinate system (y, p )  on p".) 

Theorem 2. Let V" be a pseudo-Riemannian space with Hamilton-Jacobi equation 
X = E and suppose: 

(1) There exists a set (gi, 2 s i s K )  of second-order Killing tensors which are in 
involution ({X, gi} = {gi, Si} = 0) .  

(2) The set (2, . . , gK) is linearly independent on e" (over the field of real 
scalars). dim Span(dX, dg,,  . . . , dgK) =dim Span(dpX, dPY1, . . . , dPgK), over the field 
of functions on V". 

(3) The (V i )  admit a simultaneous eigenform w = ZyZl wi dy' (with respect to 
X= Z giipipi)  corresponding to roots p l ,  . . . , pK. The eigenform w is non-null: 
Z W k g k i W j  # 0. 

(4) There exist functions hl ,  . . . , hk on V", such that 
k 

&'= h l X +  hi%;. 
i = 2  

The hi are unique. (Here, h2 is the function on p" whose local coordinate representa- 
tion is (j2 = x ; k z l  w w pipi.) 

(5) For every pair (hi,  hi) in (3.1) with hihi f 0, i # j ,  then d(hi/hi) = Q ( i ,  j ) w  where 
Q ( i ,  j )  is a function on V". 
Then there are two possibilities. 

(a) There does not exist a non-zero pair (h i ,  hi), i # j in (3.1) with d(hi/hi) non-zero. 
In this case there exists a coordinate system ( x , p )  on p" and a function g on V" 
such that 4' = gp: and {pl,  X} = 0. Hence x 1  is an ignorable coordinate: there is a 
complete integral of the form 

i j  

u ( x , c ) = c 2 x 1 + u * ( x p , c ) .  (3.2) 
(b) There exists at least one non-zero pair (hi, hi), i # j  in (3.1) with d(hi/hi) 

non-zero. In this case there is a function r on V" such that w = r dx' where x1 is an 
orthogonal separable coordinate and each g7 associated with x 1  lies in the span of 
{X, gi} over the reals. 

Conversely, if x ' is an ignorable or an orthogonal separable coordinate, conditions 
(1)-(5) are satisfied by Killing tensors gi whose relationship with x '  is given by (a) or 
(b), respectively. 

Proof. The converse follows easily from the results of P 2. Suppose on the other hand, 
conditions (1)-(5) hold and there is no non-zero pair (hi,  hi) in (3.1) with i # j  and 
d(hi/hi) # 0. Then either there is only one non-zero term hi or all quotients hi/hi are 
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constant. In either case, multiplying both sides of (3.1) by a non-zero function in V" 
if necessary, we can assume that {G', &p} = 0. Thus there is a coordinate system x for 
V" such that G 2  = p i ,  hence a complete integral of the form (3.2). 

Now suppose conditions (1)-(5) hold and there exists at least one pair (hi, hi) in 
(3.1) such that d(h,/h,) # 0. It follows immediately from ( 5 )  that, after multiplication 
by a suitable non-zero function on V" if necessary, we can assume that o = dx' for 
a non-zero function x1 on V".  Moreover, there exists a coordinate system (xl,  x") 
with respect to which 

(3.3) 11 2 2 x = g"P: + c ga*pap*, G 2 = ( g  1 p1, 

and by (3) 

From (4) and ( 5 )  we see that 

k 

i = 2  
(3.5) 

where G is a non-zero function on V" such that a,lG = 0. Comparing coefficients of 
p :  on both sides of (3.5) we find 

(3.6) 

Substituting expressions (3.3), (3.4) into conditions ( 1 )  we find &'pi  = d,1zi = 0, and 

Now { p i ,  s m }  = 0, and, substituting (3.5) into this expression and making use of (3.7), 
we find 

{ z m ,  GI f pl(x)fl(xl)  = 0. (3.8) 
1 = 1  

{ zmv GI f f l ( x l ) ~ l  = 0, 
I = 2  

The second of equations (3.8) implies {zm, G} = 0, 2 S m s K ; hence, G is a constant. 
We can assume G = 1 .  From conditions (l), (2) and lemma 2 it follows that there 
exists a complete integral u ( x ,  c )  for the Hamilton-Jacobi equation such that each gi 
is a function of the parameters c alone for p ,  = 8 , ~ .  But then (3.5) for G = 1 implies 
a x ~ p l  = ax lpv  = 0, so x is an orthogonal separable coordinate. 1 

Condition (4) requires, in essence, that the gi are related to the separable coordinate 
x1  via the Woodhouse construction (2.15). The example 2 = p : + p : + p : ,  g2= 
p3(x1p2 - x 2 p l ) ,  K = 2, satisfies conditions (1143) but violates (4) because the common 
eigenform x 1  d x 1 + x 2  dx2 does not satisfy (3.1) for any h l ,  h2.  Moreover, it is not 
possible to find an additional Killing tensor 9 3  such that {X, 92, g3} satisfies (3.1). 
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(3.9) 
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